On the Cauchy Problem for the Cutoff Boltzmann Equation with Small Initial Data
نویسندگان
چکیده
We prove the global existence of non-negative unique mild solution for Cauchy problem cutoff Boltzmann equation soft potential model $$-1\le \gamma < 0$$ with small initial data in three dimensional space. Thus our result fixes gap case $$\gamma =-1$$ space authors’ previous work (He and Jiang J Stat Phys 168(2):470–481, 2017) where estimate loss term was improperly used. The other He (2017) =0$$ two is recently fixed by Chen et al. (Arch Ration Mech Anal 240:327–381, 2021). $$f_{0}$$ satisfies that $$\Vert \langle v \rangle ^{\ell _{\gamma }} f_{0}(x,v)\Vert _{L^{3}_{x,v}}\ll 1$$ f_0\Vert _{L^{15/8}_{x,v}}<\infty $$ $$\ell }=0$$ when }=(1+\gamma )^{+}$$ $$-1<\gamma <0$$ . also show scatters respect to kinetic transport operator. novel contribution this lies exploration symmetric property gain terms weighted estimate. It key ingredient solving applying Strichartz estimates.
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولCauchy Problem of Nonlinear Schrödinger Equation with Initial Data
In this paper, we consider in Rn the Cauchy problem for the nonlinear Schrödinger equation with initial data in the Sobolev space W s,p for p < 2. It is well known that this problem is ill posed. However, we show that after a linear transformation by the linear semigroup the problem becomes locally well posed in W s,p for 2n n+1 < p < 2 and s > n(1 − 1 p ). Moreover, we show that in one space d...
متن کاملExistence of Global Solution of the Cauchy Problem for the Relativistic Boltzmann Equation with Hard Interactions
By using the DiPerna and Lions techniques for the nonrelativistic Boltzmann equation, it is shown that there exists a global mild solution to the Cauchy problem for the relativistic Boltzmann equation with the assumptions of the relativistic scattering cross section including some relativistic hard interactions and the initial data satifying finite mass, “inertia”, energy and entropy.
متن کاملOn the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-gap Initial Data I. Schwartz-type Perturbations
We solve the Cauchy problem for the Korteweg–de Vries equation with initial conditions which are steplike Schwartz-type perturbations of finitegap potentials under the assumption that the respective spectral bands either coincide or are disjoint.
متن کاملOn the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-gap Initial Data I. Schwarz-type Perturbations
We solve the Cauchy problem for the Korteweg–de Vries equation with initial conditions which are steplike Schwartz-type perturbations of finitegap potentials under the assumption that the mutual spectral bands either coincide or are disjoint.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Physics
سال: 2023
ISSN: ['0022-4715', '1572-9613']
DOI: https://doi.org/10.1007/s10955-023-03065-y