On the Cauchy Problem for the Cutoff Boltzmann Equation with Small Initial Data

نویسندگان

چکیده

We prove the global existence of non-negative unique mild solution for Cauchy problem cutoff Boltzmann equation soft potential model $$-1\le \gamma < 0$$ with small initial data in three dimensional space. Thus our result fixes gap case $$\gamma =-1$$ space authors’ previous work (He and Jiang J Stat Phys 168(2):470–481, 2017) where estimate loss term was improperly used. The other He (2017) =0$$ two is recently fixed by Chen et al. (Arch Ration Mech Anal 240:327–381, 2021). $$f_{0}$$ satisfies that $$\Vert \langle v \rangle ^{\ell _{\gamma }} f_{0}(x,v)\Vert _{L^{3}_{x,v}}\ll 1$$ f_0\Vert _{L^{15/8}_{x,v}}<\infty $$ $$\ell }=0$$ when }=(1+\gamma )^{+}$$ $$-1<\gamma <0$$ . also show scatters respect to kinetic transport operator. novel contribution this lies exploration symmetric property gain terms weighted estimate. It key ingredient solving applying Strichartz estimates.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Cauchy Problem of Nonlinear Schrödinger Equation with Initial Data

In this paper, we consider in Rn the Cauchy problem for the nonlinear Schrödinger equation with initial data in the Sobolev space W s,p for p < 2. It is well known that this problem is ill posed. However, we show that after a linear transformation by the linear semigroup the problem becomes locally well posed in W s,p for 2n n+1 < p < 2 and s > n(1 − 1 p ). Moreover, we show that in one space d...

متن کامل

Existence of Global Solution of the Cauchy Problem for the Relativistic Boltzmann Equation with Hard Interactions

By using the DiPerna and Lions techniques for the nonrelativistic Boltzmann equation, it is shown that there exists a global mild solution to the Cauchy problem for the relativistic Boltzmann equation with the assumptions of the relativistic scattering cross section including some relativistic hard interactions and the initial data satifying finite mass, “inertia”, energy and entropy.

متن کامل

On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-gap Initial Data I. Schwartz-type Perturbations

We solve the Cauchy problem for the Korteweg–de Vries equation with initial conditions which are steplike Schwartz-type perturbations of finitegap potentials under the assumption that the respective spectral bands either coincide or are disjoint.

متن کامل

On the Cauchy Problem for the Korteweg–de Vries Equation with Steplike Finite-gap Initial Data I. Schwarz-type Perturbations

We solve the Cauchy problem for the Korteweg–de Vries equation with initial conditions which are steplike Schwartz-type perturbations of finitegap potentials under the assumption that the mutual spectral bands either coincide or are disjoint.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Physics

سال: 2023

ISSN: ['0022-4715', '1572-9613']

DOI: https://doi.org/10.1007/s10955-023-03065-y